Phylogeny of Calvin cycle enzymes supports Plantae monophyly.

نویسندگان

  • Adrian Reyes-Prieto
  • Debashish Bhattacharya
چکیده

Photosynthesis is a critical biochemical process on our planet providing food for most life. The common ancestor of plants and their algal sisters gained photosynthesis through the engulfment and retention of a cyanobacterial primary endosymbiont that evolved into a photosynthetic organelle, the plastid (Bhattacharya et al., 2004). In photosynthetic eukaryotes, the essential series of reactions that capture the products of photosynthetic light reactions (ATP and NADPH2) to fix CO2 (Fig. 1), known as the Calvin cycle (CC; Calvin and Benson, 1948), takes place in the plastid stroma. The eukaryotic CC involves 11 different enzymes (Table 1) that are nuclear encoded and plastid targeted to express their function, with the exception of ribulose-1,5-bisphosphate carboxylase (RuBisCO) subunits (large and small) that remain plastid encoded in red and glaucophyte algae. In green algae (and land plants) the RuBisCO large subunit is encoded in the plastid genome but the small subunit is nuclear encoded. Photosynthetic eukaryotes also contain cytosolic enzymes involved in glycolysis and gluceoneogenesis that catalyze reactions similar to those in the CC and were present in eukaryotes before plastid origin (Martin and Schnarrenberger, 1997). Molecular phylogenetic analyses suggest that land plants (Martin and Schnarrenberger, 1997) and red algae acquired at least a subset of the CC enzymes via intracellular (endosymbiotic) gene transfer (EGT) from the captured cyanobacterium prior to the divergence of green and red algae (Matsuzaki et al., 2004). However, it is well known that some CC enzymes in land plants and red algae have a non-cyanobacterial origin (Martin and Schnarrenberger, 1997; Matsuzaki et al., 2004). A likely explanation is that

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Rare Genomic Changes Does Not Support the Unikont–Bikont Phylogeny and Suggests Cyanobacterial Symbiosis as the Point of Primary Radiation of Eukaryotes

The deep phylogeny of eukaryotes is an important but extremely difficult problem of evolutionary biology. Five eukaryotic supergroups are relatively well established but the relationship between these supergroups remains elusive, and their divergence seems to best fit a "Big Bang" model. Attempts were made to root the tree of eukaryotes by using potential derived shared characters such as uniqu...

متن کامل

Gene sampling can bias multi-gene phylogenetic inferences: the relationship between red algae and green plants as a case study.

The monophyly of Plantae including glaucophytes, red algae, and green plants (green algae plus land plants) has been recovered in recent phylogenetic analyses of large multi-gene data sets (e.g., those including >30,000 amino acid [aa] positions). On the other hand, Plantae monophyly has not been stably reconstructed in inferences from multi-gene data sets with fewer than 10,000 aa positions. A...

متن کامل

Monophyly of Rhizaria and multigene phylogeny of unicellular bikonts.

Reconstructing a global phylogeny of eukaryotes is an ongoing challenge of molecular phylogenetics. The availability of genomic data from a broad range of eukaryotic phyla helped in resolving the eukaryotic tree into a topology with a rather small number of large assemblages, but the relationships between these "supergroups" are yet to be confirmed. Rhizaria is the most recently recognized "sup...

متن کامل

Origin and distribution of Calvin cycle fructose and sedoheptulose bisphosphatases in plantae and complex algae: a single secondary origin of complex red plastids and subsequent propagation via tertiary endosymbioses.

Sedoheptulose-1,7-bisphosphatase (SBPase) and fructose-1,6-bisphosphatase (FBPase) are essential nuclear-encoded enzymes involved in land plant Calvin cycle and gluconeogenesis. In this study, we cloned seven SBP and seven FBP cDNAs/genes and established sequences from all lineages of photosynthetic eukaryotes, in order to investigate their origin and evolution. Our data are best explained by a...

متن کامل

Molecular Phylogeny ofthe Puntius (Hamilton, 1822) Based on Nuclear Gene RAG2

The tropical Asian cyprinid genus Puntius is a major part of the ichthyofauna in Southeast Asia. Systematic status of the genus Puntius among Cyprinidae, the most prominent freshwater fish all over the world, remain to be substantiated. The molecular phylogenetic analyses derived from Recombination activating genesequences (RAG2) for 35 representative samples of Malaysian Puntius and their alli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular phylogenetics and evolution

دوره 45 1  شماره 

صفحات  -

تاریخ انتشار 2007